1,295 research outputs found

    Daylight operation of a free space, entanglement-based quantum key distribution system

    Get PDF
    Many quantum key distribution (QKD) implementations using a free space transmission path are restricted to operation at night time in order to distinguish the signal photons used for a secure key establishment from background light. Here, we present a lean entanglement-based QKD system overcoming that imitation. By implementing spectral, spatial and temporal filtering techniques, we were able to establish a secure key continuously over several days under varying light and weather conditions.Comment: 13 pages, 6 figure

    Experimental quantum key distribution based on a Bell test

    Full text link
    We report on a complete free-space field implementation of a modified Ekert91 protocol for quantum key distribution using entangled photon pairs. For each photon pair we perform a random choice between key generation and a Bell inequality. The amount of violation is used to determine the possible knowledge of an eavesdropper to ensure security of the distributed final key.Comment: 5 pages ReVTeX, 3 figures; version v2 with updated references and minor corrections, author spelling fixe

    Low-scale inflation in a model of dark energy and dark matter

    Get PDF
    We present a complete particle physics model that explains three major problems of modern cosmology: inflation, dark matter and dark energy, and also gives a mechanism for leptogenesis. The model has a new gauge group SU(2)ZSU(2)_Z that grows strong at a scale Λ103\Lambda\sim 10^{-3} eV. We focus on the inflationary aspects of the model. Inflation occurs with a Coleman-Weinberg potential at a low scale, down to \sim 6\times 10^5\gev, being compatible with observational data.Comment: 5 two-column pages, RevTex4; two reference added and minor changes made in the text; published in JCA

    Where are the Walls?

    Full text link
    The reported spatial variation in the fine-structure constant at high redshift, if physical, could be due to the presence of dilatonic domains, and one or more domain walls inside our horizon. An absorption spectrum of an object in a different domain from our own would be characterized by a different value of alpha. We show that while a single wall solution is statically comparable to a dipole fit, and is a big improvement over a weighted mean (despite adding 3 parameters), a two-wall solution is a far better fit (despite adding 3 parameters over the single wall solution). We derive a simple model accounting for the two-domain wall solution. The goodness of these fits is however dependent on the extra random error which was argued to account for the large scatter in most of the data. When this error is omitted, all the above solutions are poor fits to the data. When included, the solutions that exhibit a spatial dependence agree with the data much more significantly than the Standard Model; however, the Standard Model itself is not a terrible fit to the data, having a p-value of ~ 20 %

    To a New Normal: Surgery and COVID-19 During the Transition Phase

    Get PDF
    Surgeons and surgery departments have shown resilience in responding to the COVID-19 pandemic. As the situation stabilizes, it will be necessary to adopt new strategies to move into the transition phase and eventually the full recovery phase

    Parecença entre acessos de feijoeiro comum de grãos brancos utilizando o método de Harrison.

    Get PDF
    O objetivo deste trabalho foi estudar o coeficiente de parecença através da aplicação do modelo de Harrison, em variáveis qualitativas multicategóricas e determinar a matriz de distâncias entre acessos tradicionais de feijoeiro comum visando detectar possíveis redundâncias entre acessos.bitstream/CNPAF-2010/29749/1/comt-181.pd

    Reconstructing a model of quintessential inflation

    Full text link
    We present an explicit cosmological model where inflation and dark energy both could arise from the dynamics of the same scalar field. We present our discussion in the framework where the inflaton field ϕ\phi attains a nearly constant velocity mP1dϕ/dNα+βexp(βN)m_P^{-1} |d\phi/dN|\equiv \alpha+\beta \exp(\beta N) (where NlnaN\equiv \ln a is the e-folding time) during inflation. We show that the model with α<0.25|\alpha|<0.25 and β<0\beta<0 can easily satisfy inflationary constraints, including the spectral index of scalar fluctuations (ns=0.96±0.013n_s=0.96\pm 0.013), tensor-to-scalar ratio (r<0.28r<0.28) and also the bound imposed on Ωϕ\Omega_\phi during the nucleosynthesis epoch (Ωϕ(1MeV)<0.1\Omega_\phi (1 {\rm MeV})<0.1). In our construction, the scalar field potential always scales proportionally to the square of the Hubble expansion rate. One may thereby account for the two vastly different energy scales associated with the Hubble parameters at early and late epochs. The inflaton energy could also produce an observationally significant effective dark energy at a late epoch without violating local gravity tests.Comment: 18 pages, 7 figures; added refs, published versio

    New bulk scalar field solutions in brane worlds

    Full text link
    We use nonlinear perturbation theory to obtain new solutions for brane world models that incorporate a massive bulk scalar field. We then consider tensor perturbations and show that Newtonian gravity is recovered on the brane for both a light scalar field and for a bulk field with large negative mass. This latter result points to the viability of higher-derivative theories of gravity in the context of bulk extra dimensions.Comment: 4+\epsilon pages, no figure
    corecore